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4. Rationale:  

Positive Heterozygosity Fitness Correlations (HFCs) have been found in many 

organisms, including humans (Chapman et al. 2009). In particular, associations have been 



found between heterozygosity at the Major Histocompatibility Complex (MHC) (a.k.a. 

Human Leukocyte Antigen, HLA) region and general health in humans (Lie et al. 2009). 

Several studies in humans have linked increased MHC heterozygosity in a male with 

facial and auxiliary odor preferences in females (Thornhill et al. 2003 and Roberts et al. 

2005). It is thought that these influences on mate selection are adaptive (Piertney et al. 

2006). In the case of the heterozygosity in the MHC region, the cause of a positive HFC 

being observed is believed to be the result of increased antibody diversity conveying 

robust pathogen resistance and therefore increased general health (Piertney et al. 2006).  

 

However in the case of whole genome heterozygosity, the mechanism of action is less 

clear. The current thinking is there are two mechanisms that act at a genome level to 

influence fitness. One mechanism is to compensate for deleterious mutations in 

polyploidy organisms by being heterozygous at sites where there is one of these 

mutations (Charlesworth et al. 2009). The second mechanism that acts at a genome level 

to influence fitness is theorized to be overdominance/heterozygous advantage 

(Charlesworth et al. 2009). For this study, we wish to measure whole genome 

heterozygosity in Caucasians to determine if increased heterozygosity at a whole genome 

level conveys increased longevity. 

 

If promising associations are found, then we will stratify by cause of death and perform 

the analysis again to see if one particular disease or other cause of death is particularly 

influenced by heterozygosity. This could lead to altered care for such individuals leading 

to longer life. Also, findings from this study will be replicated in the Cohorts for Heart 

and Aging Research in Genomic Epidemiology (CHARGE) cohort. 

 

5. Main Hypothesis/Study Questions: 

Here we ask if Genome Wide Heterozygosity (GWH) stratified by genomic location can 

be correlated with mean survival in humans. 

 

6. Design and analysis (study design, inclusion/exclusion, outcome and other 

variables of interest with specific reference to the time of their collection, summary 

of data analysis, and any anticipated methodologic limitations or challenges if 

present). 

Data from 8,509 Caucasians from the Atherosclerosis Risk in Communities (ARIC) 

cohort are requested for this study. Affymetrix SNP genotyping data from sites across the 

genome and basic phenotype data is needed for each person. Because of the ARIC 

cohort’s design, the fitness parameter chosen for the HFC is time in years from study 

entry until death or date of last mortality survey (a.k.a. follow-up time). Additional, we 

will use time in years from birth until death or date of last mortality survey (a.k.a. age) as 

an alternate fitness parameter in order to parse apart potential interactions with age. In 

order to correlate this type of survival data to genome wide heterozygosity, a Cox 

proportional hazards (CoxPH) model will be used. Phenotype and technical covariates 

will be tested in the model to ensure we are accurately testing our hypothesis. Possible 

covariates include data collection site, age at time of entering study, gender, general 

education level, BMI, income, and other available socioeconomic parameters. Cross-



sectional analysis of age and heterozygosity against survival will also be done to ensure 

the assumptions inherent in the CoxPH are valid for this study.  

 

We will use several methods to estimate genome wide heterozygosity. First will be to 

sum the number of heterozygous loci and divide by the total number of loci for which 

there is data in each individual. Additional methods involve the same calculation, the 

difference being which loci are included. We hypothesize that heterozygosity in different 

parts of the genome may have a different effect on survival. See the following table for a 

list of the inclusion criteria. 

 

Table 1: Lists of nine sets of SNPs used to calculate genome wide heterozygosity 

All SNPs   SNPs per Chromosome 

SNPs Within an Exon  SNPs Within 20kb of an Exon 

SNPs Not Within an Exon SNPs Not Within 20kb of an Exon 

SNPs Within a Gene  SNPs Within 20kb of a Gene 

SNPs Not Within a Gene SNPs Not Within 20kb of a Gene 

 

In order to make a conservative list of these parts of the genome (where the genes/exons 

are), we will consider any location annotated by CCDS, Refseq, Ensembl, or UCSC as a 

genomic element to be a part of that genomic element. 

 

We will use Plink (http://pngu.mgh.harvard.edu/~purcell/plink/) and R-Project 

(http://www.r-project.org/) to perform the following analyses (Purcell et al. 2007 and 

Therneau 2012). First we will check the quality of each sample’s data. We will set the 

minimum call rate to be included in this study to 95%. Exclusion based on sample call 

rate is primarily to exclude defective SNP chips on the basis that chips that cannot make 

enough SNP calls cannot make accurate SNP calls either. Next we will check to see if a 

sample’s genotypic sex matches its phenotypic sex. Excluding samples because of sex 

inconsistencies is done primarily because inconsistencies many indicate that the sample 

has been switched for another by mistake. If that were true, the sample’s phenotype data 

would be effectively random compared to its genotype and therefore reduce any 

correlation. We will perform IBD analysis to find related samples. Related samples 

reduced correlations by adding structure to the data and lead to inflated test statistics. 

First degree relatives will be excluded from the study. Nearest Neighbor analysis will be 

conducted with Plink to find the five closest related samples to a particular sample. Then 

the number of times a sample showed up in the list is counted and plotted. Outliers are 

assumed to be samples contaminated with DNA from other samples. This kind of 

contamination would artificially result in more heterozygous calls and reduce IBD0 

between samples. Since artificially increased heterozygosity would reduce a HFC, the 

strict cut off of will be used. Principal component analysis (PCA) will be performed to 

account for population substructure. These principal components will also be added to the 

final model as covariates. 

 

Each SNP’s integrity will analyzed as well. A stringent cut off will be used to ensure only 

the highest quality SNP calls will contribute to our heterozygosity metric. Also, only 

SNPs that can be uniquely mapped back to the genome will be used. This is because 



SNPs that do not map uniquely could be called heterozygous when in fact there is a 

single nucleotide difference between the places it maps to. Only autosomal SNPs will be 

used in this study to reduce sex bias. Lastly, SNPs will be excluded for having a Hardy-

Weinberg Equilibrium p-value of greater than 0.001. This is to exclude SNPs of great 

effect that are under high selection. 
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